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3. 2~spheres.

. 4
Exampir 3.1, A 2-sphere whose exterior is not simply c&ﬁnecte;!.(w ve It
Such a 2-sphere is the boundary X° of the 8-cell p u .tﬁ_];;ﬂ: e I
01:11d be very simple to obtain from this & 2-sphere wi
w

i -gimpl ected (cf. below). ' ]
ﬂtEe;:;-Er?; gll;p Zc;)j?phere which is wildly imbedded even though both comple

tary domains are open 3-cells.
meguc?];ya 2-sphere is the boundary ¥° of the 3-cell

FolUs) v fu(Us) v Una fu(U) v g. |
. . . ;
The proofs in 1.2 apply with a few mild changes in the wording. This examp

hows that the 3-sphere S may be decomposed into o closed 3-cell and a comple-
3N0° -

-cell in several essentially distinct ways. .
Wgwripog;?’:?é ceziélzg-iphere whose exterior though simply connected is not an open
XA 3.

S-CFe‘l(f;- this example we choose Z°, the boundary of the 3-cell

Py U:.f....g‘° gn(U} U go(Us v Up) vfi(TUs v Us) v U fu(U) v g

i le it is
i i lement of Z. From this examp .
i homeomorphic to the comp 5 :
s e};t:r;g;;:ruzt s 2-.sphere both of whose conl.zpIemen’c,an}r1 don::::)s;}zfcs;?pai
zﬁsniected {and hence contractible) open manifolds not home ‘

open 3-cell. Such a one is shown in figure 12,
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u Such a 2'5phele wag cons Iu(}ted by ALEXANDER, loc. cit. p. 11 and PP 8'104 Our
p
¢ i loe '
ch Blmp!er y Y (¢} Smgul r p h
examp]e, which iz a mu one, has only tw ) oints Whlle the Alexander

examples have an infinity of singular points.
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THE THEORY OF BRAIDS
By EMIL ARTIN

Princeton University

THE theory of braids shows the interplay of two disciplines of pure
mathematics—-topology, used in the definition of braids, and the
theory of groups, used in their treatment.

The fundamentals of the theory can be understood without too much
technical knowledge. 1t originated from a much older probiem in pure
mathematics—the classification of knots. Much progress has been
achieved in this field; but all the Progress seems only to emphasize the
extreme difficulty of the problem. Today we are stil] very far from a
complete solution, In view of this fact it is advisable to study objects
that are in some fashion similar to knots, yet simple enough so as to
make a complete classification possible. Braids are such objects.

In order to develop the the-
£ 5 A R QJ' ory of braids we first explain
\ what we call a weaving pattern
of order # (n being an ordinary
integral number which s taken
to be 5 in Figure 1).
Let L, and L, be two parallel
straight lines in space with

given orientation in the same
_ sense (indicated by arrows). If
Pis a point on L, Q@ a point on
/ Ly, we shall sometimes join P
\ L, and Q by 2 curve ¢. In our
Q

Q, Q, Q. drawings we can only indicate
Frovss 1 the projection of ¢ onto the
plane contamning L, and I,

since ¢ itself may be a winding curve in space.

The curves ¢ that we shall use will be restricted in their nature by the
following condition. If R is 2 point on the projection of ¢ that moves
from P to 0, then its distance from the line L, shall always increase.
{Therefore a curve moving down a little, then up, and finally down

name for such curves, let us call them normal curves. We orient them
(by arrows) in the sense from P to Q.

Select # points on L,. Moving along L, in the direction indicated by
the arrow we shall call the first of the given = points Py, the next P,
and the last P,, In the same way denote by 0., Q,, . . . O n points on
the line L,. Now we connect each point Py with one of the points by
2 normal curve ¢; (c, begins at P, and ends at some 0, which may or

Based on material presented in the Sigma Xi National Lectureships, 1949,
Al tights reserved,
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may not be 0,). We only observe the following condition: no two of
the curves ¢, intersect in space. Consequently no two of the curves ¢,
end at the same point Q.

If we want to indicate this in a drawing, we have to overcome the
difficulty that, although the curves do not meet in space, their projec-
tions may cross over each other, To indicate that at a certain crossing
the curve c; is below another one, we interrupt its projection slightly
{this is the well-known way to indicate such occurrences in techmical
drawings).

The whole system of straight lines and curves shall be called 2 weav-
ing pattern.

In order to explain the notion of a braid we start with a given weav-
ing pattern and think of the lines L, and L, as being made of rigid ma-
terial, whereas the curves ¢; are considered as arbitrarily stretchable,
contractible, and flexible. The points £, and Q, may also move on their
lines provided their ordering is always preserved,

We subject the whole weaving pattern to an arbitrary deformation in
space restricted by the following conditions:

(1} L, and L, stay parallel during the deformation {but otherwise

they can be moved freely in space; their distance may change),

(2) No two of the curves ¢, intersect each other during the deforma-
tion (this means that the material is “impenetrable”),

(3) The curves stay normal during the deformation (but otherwise
they may be stretched or contracted as the situation demands).

After such a deformation we obtain a weaving pattern that may look
-quite different from the one we started with. A quite tame-looking pat-
tern may indeed (after the deformation) become hopelessly entangled.

By a braid we mean a weaving pattern together with the permission
to deform it according to the previous rules. If we present a weaving
pattern, it describes a braid. But infinitely many patterns will describe
the same braid, namely all those that can be obtained from the given
one by a deformation. The order 2 of the pattern shall be called the
order of the braid.

We now have the following fundamental problem. Given two weav-
ing patterns, is it possible to decide whether or not they describe the
same braid? In other words, is it possible to decide whether or not a
pattern can be deformed into a given other one?

Up to now we have considered braids of all orders #. From now on we
assume 7 to be an arbitrary but fixed integer and restrict ourselves,
without saying it explicitly, to braids of that order =,

Let now 4 and B be two braids. We first explain what we mean by the .

product 4B of 4 and B. We select definite patterns for 4 and B. Call
L, L,, Py, Q,, ¢, the lines, points, and curves respectively of 4, and

L’n Lla; P'I, Q’l, ¢’y those of B.
We deform B until the plane through L', and L', coincides with the

plane through L, and L,, and until the line L, coincides {including ori-
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entat‘ion) with the line 2/, being careful to have L, and L', on differ-
ent sides of L,. F inally we deform B until the points O, co?ncide with
the points P, This being achieved, we erase the !ineNLg, obtaining a
new composed weaving pattZrn

which shall stand as pattern for
the braid 4R,

; Intuitively speaking, this
means: 4B is obtained by ty-

- ing the beginning of B to the
end of 4. Figure 2 explains the

process. The reason for calling

\ the result of this process a
y  broduct lies in the fact that the

\ ]*Lz"l-, process has some similarity to
the ordinary multiplication of

\ numbers, We first show:
/ B (4B)C = 4(BC)
the so-called associative law of
multiplication.
What does (A4B)C mean? Tt
\ means: form first 48 and com-
_ Ik pose this with C. So tie B to 4

2 and to the result tie C. What,
. on the other hand, does A(BC)
mea.n? It asks us first to form BC, that is to tie € to B, The result shall
be tied to A. Obviously we obtain the same pattern as (4B)C,

Bl..lt this similarity does not 80 too far. For instance, the law 4B —
BA is false in general. Very simple examples already show this, It may
hold only accidentally {for very
special braids, In computations
one must, therefore, be carefyl
about the order of terms in a
product.

Let us denote by I the braid in-
dicated in Figure 3. In its pattern

Fiouss 3 the curves ¢, are simply straight

_ ) lines joining P, and 0O, without

crossings, If we tie I to any braid 4, it is almost immediatel; seen that

[{’le resulting braid 41 can be changed back to A; indeed the line L,is

snnply replaced by a somewhat lower line. Therefore 41 — 4 for :ny
braid 4; similarly we see 14 = 4 for any 4.

Our braid I has therefore a strong resemblance to the number 1 (since
l.e = a1 for any number a). This explains the chojce of the name I
(toman one).

What does the equation 4 = | mean? If 4 is originally given by some

Freure 2
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The Theory of Braids 115

complicated pattern, then 4 = I means that by some deformation this
pattern can be changed into the pattern of Figure 3, We may say in-
tuitively: 4 = I means that 4 can be combed.

Figure 4 shows the braid 4 of

Figure I, and tied to it its exact \ \ ’
reflexion on the line L, which

we call 47, The reader can con- \

vince himself that the combined

braid 44 can be disentangled A
if he starts removing crossings

from the middle outwards. In

the same way he can see that
474 can be combed.
There exists therefore to any
braid 4 another braid 4~ (its \
reflexion) such that >
A4t =414 =1 /
The symbol A7 is chosen be-
cause of an analogy -with ele-

mentary algebra where a7 A"
1
stands for the number i that
aa™ = g'¢ = 1 for any non-
zero number a. /
Reviewing we may say: the /
braids form a system of objects / - N

in which a multiplication is de-
fined. Three properties hold for , Freure 4
this multiplication: . _

(1) The associative law (4B)C = 4(BC) is satisfied.

(2} There is a braid called I such that 41 = 14 = 4 holds for any
braid 4. '

(3) To any braid 4 another braid 4= can be found such that
447 =434 = 1. .

If in these three statements we were to replace the word “braid’ b.y
the phrase “object of the system,” we should obtain the exact defini-
tion of what in higher algebra one calls a “group.” A group is simply a

system of arbitrary objects, to- /

gether with some kind of multi-

plication such that our three prop-

erties hold. We may say therefore: _

the system of all braids of order

n is a group. /
The theory of groups has been

developed extensively, and its Fiovez

methods may be applied to our
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problem. Let us look at the special braid indicated in Figure 3.
Here the curve ¢, 8ocs once over the curve c.,, whereas all other
curves are straight lines connecting Py and ;. We shall call this
braid oy and obtain in this fashion #-1 braids o, 0;, . .. 0u_,. (cu does
not exist since it would involve an #+1-st curve). The braid where I
goes under ¢, ., needs no new name. It is the reflexion of o, and may
therefore be denoted by a2

Consider now the pattern of any braid 4, for example the braid
in Figure 1. In its projection two crossings may occur at exactly the
same height. But it is evident that a slight deformation of braid 4 will
produce a pattern where this does not happen.

We cut up our pattern into small horizontal sections, such that only
one crossing occurs in each section. Our braid 4 is obtained from all
these sections by tying them together again. Each of these sections is
obviously either a braid ¢, or 2 braid o, depending on the nature of
the crossings. Consequently we can express 4 as the product of terms
each of which is either a oy 0ra ot

The braid in Figure 1, for example, is given by:

d=00 0, 0, 0t a; 0,7

If every element in a group can be expressed as product of some ele-

ments ¢y and their inverses, we say that the o, are generators of the

group. We may therefore state: the # — 1 elements o are generators of
the braid group.

AX-YA

Fieure §

We are now in a position to describe any weaving pattern. As an ex-
ample let us look at the braids in a girl’s hair. A close look reveals that
such a braid can be described by:

4d=g, ol Loy ot = (o, 0,7 1)k
where £ is the number of times the elementary weaving pattern is re-
peated. 4

Figure 6 shows the equality a; o; = o, ¢,. A similar figure would
show oy o) == o; o, if 7 is 1+2 or more. That o, oy is different from
v, 0y can be seen by a simple sketch; in o, o, the curve ¢, runs from P,
to O;, whereas in o, ¢, it runs from PitoQ,.

But oy 0,,, o =01 05 o1.. Figure 7 shows it for i — I; the reader
readily deforms the two patterns into each other.
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/ -

/

Fieure 7

We have seen that the group has #— 1 generators. Actually we can get
away with only two: namely «, and the braid
e =0, 0;...0z, (product)
Let us prove the statement for n = 5, We have
ATy = 010,05 04+,
But o, 0, = @, o,; therefore a 0, = 0, o, 0, 0, 0,.
Now o, ¢, = 0, 0y; hence a o, == 0, 0, 0, + 03 0.

From Oy Uy ¥y = O, 0, 0y We obtain a Ty = 0y Oy ¢, T3 Oy
Therefore ¢ o, =0, a0reac, ¢ =0, a (:.‘1 =0, 1 =g,
Hence v, =adat.

Similarly:

QO = G 0303 0,0, ") "G 030,04 == 0) + 03 &y U ~ 0y =
Fg T Tp Oy Ty == Ty @
—— =1
It follows that e s, el == ¢, OL 0, — a o, at,
Substituting our result for o, we obtain L,
0; "Taao alal =4 g at
Finally: _
GO 7= 0 0 O3 0 03 =01 0,0, 030, — 0y 0,03, 030, = 0,0
Consequently a o3 a™! = ¢,. Substituting for o:

2 1. .3 -3
gymaczet Taale a et = of 0, O

In one formula:

o = a! oy a7t

Each oy can be expressed by a and ¢, and therefore any braid 4 can

be expressed by « and o,. )
In the following we shall not make use of this result.

The formulas: '
(1) o1 05 = oy oy, if 7 is at least 12
(2) Oy Tiyy O = Oy 01 Olyy
have the following significance:

Suppose two braids 4 and B given by patterns. Each pattern may be
used to express 4 and B respectively as a product of terms o, or o
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If 4 = B, it must in some fashion be possible to change from the ex-
pression 4 to the expression B. It can be shown that this can always be
done by a repeated use of ejther formulas (1) or (2), or of simple alge-
braic consequences of these formulas. It is this fact one refers to if one
says: the braid group has the defining relations (1} and (2). The proof
is too long to be reproduced here.

We proceed now to our fundamental problem, Let us first consider a
braid 4 in which the curves ¢ connect Py with Q, (the O, with exactly
the same subscript),

Suppose we remove the curve ¢ A certain braid 4, of order n—1
remains. Now we reinsert a curve dy between P, and O, that is not en-
tangled at all with the other strings (this means that its projection ex-
hibits no crossings at all). This new braid of order 2 we call B.

Denote now the braid 45- by C. This braid C has a peculiar prop-
erty. If the first string of C is removed, then the braid that remains
from the A-part of ¢ is Ay, and 4,7 is the part that remains from B,
(According to our construction, 4 and B differ only by their first
strings.) Therefore removing the first string from ¢ leaves 4, 4, = 1
~—a braid that can be combed. To be sure, € itself cannot- necessarily be
combed until the first string has been removed.

Suppose now that this combing operation with the last # - { strings
of C is performed by force in spite of the presence of the first string.

~ Since the first string s

, stretchable up to any
amount, it may be taken

l along during this combing
operation. At the end the

& first string will be en-
' b tangled in a terrible fash-

ion, but the result will look

Qj somewhat like Figure 8. A

' pattern of this type is called
1-pure,

\ Now 4B = ¢; 4BB

_____._._' — l = CB; therefore 4 = CB.

So 4 is a product of a
I-pure braid € and another
braid B which is obtained from a braid of order -1 by inserting a
first string not meeting the others in a projection. The second string of
B can be treated in the same way, and so on,

The final result is:

Fieure 8

4d=CC,...C.,
where C, is a braid of the following kind: all strings but the i-th are
vertical straight lines, and the i-th i only involved with strings of a
higher number. Of course this means that for every braid 4 a pattern
of this special kind can be found.
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The solution of our fundamental problem consists in the assertion
that a pattern of this type describes the braid uniquely; i.e., that in order
to test whether 4 = B for two braids whose curves ¢, connect P; with
@i one has only to bring 4 and B into this form and to see whether ex-
actly the same pattern results. The proof for this fact is very involved
and cannot be included here. Nor shall we deseribe the translation of
our geometric procedure into group theoretical language,

It is clear that this procedure contains the solution of the full prob-
lem to decide whether 4 = B {or any two braids 4 and B given by
weaving patterns. First 4 = B means the same as 4B-* = 1. The braid
[ connects P, with Q,. Should 4B-* not do this, then certainly 4 is not
equal to B. In case 4B connects each P, with Q,, the previous method
makes it possible to decide whether 4B-1 =1 or not.

Finally let us mention an unsolved problem of the theory of braids.
If we wind a braid once around an axis, close it by identifying P, and
(0, and remove the lines L, and L,, we obtain what we call a closed
braid. Again we allow all those deformations in the course of which the
curves do not cross the axis, nor each other,

The problem of classification of closed braids, at least, can be trans-
lated into a group theoretical problem. Let 4 and B be two open braids.
The corresponding closed braids are equal if, and only if, an open braid
X can be found such that

B = X4X>

A solution to this problem has not yet been found. Since in some ways
closed braids resemble knots, such a solution could be applied to the
problem of knots. It would also have many applications in pure mathe-
matics,

REFERENCES

Artin, E. Theory of braids. Aanals of Mathematics 48, 1947,

‘ArTiv, E. Braids and permutations. Annals of Mathematics 49, 1948,
Bonnexsrusr, F. The algebraic braid group. Annals of Mathematics 48, 1947.
. Crow, W. L. On the algebraic braid group. dunals of Mathematics 49, 1948.

bl ad 2l ol

498

Ein mechanisches System mit quasiergodischen
- Bahnen,

Von EMIL ARTIN in Hamburg

) F'}s sei gestattet, auf ein einfaches mechanisches System von zwei
Freiheitsgraden mit quasiergodischen Bahnen hinzuweisen, zu dem der
Verfasse.r in einem Briefwechsel mit Herrn G. HrreLOTZ gekommen ist.

» Wir wollen n#mlich eine Fliche konstruieren, deren geoditische
Linien ,fast alle“ quasiergodisch sind, also jedem Punkt beliebig nahe
lmmmenZ und zwar in jedem vorgeschriebenen Richtungsintervall.

er‘ betrachten die obere Halbebene %> 0 der komplexen Variablen
==z +iy und filhren in ihr die Poixcartsche Metrik ein mit dem

Linienelement
(1) == ilg »
‘ Y
Wwo do==|dz| das gewohnliche euklidische Linienelement bedeutet. Die

80 eingefiih.rte _Metrik besitzt zwei bekannte einfache Eigenschaften.?)

llazil—eb ist invariant gegeniiber allen linearen Substitutionen
2 = et d mit reellen Koeffizienten und positiver Determinante:
ad’—; be>0. Sie ist anch invariant gegeniiber der Spiegelung # — — 7.
wo z die zu 2z konjugiert komplexe Zahl bedeutet. ’
2 Pie geodatischen Linien sind alle Halbkreise der oberen Halp-
ebene:&dlelaufhie; reellen Achse senkrecht aufsitzen.

us 1. geht die Homogeneits i ; i

e dasg Krimatan, f:ge;azrf-eie‘r Metrik hervor. Die Rechnung
'_ ) Nunmehr identifizieren wir alle Punkte der Halbebene die durch
eine Substitution mit ganzen Koeffizienten wnd der Determh;a.nte 1 zu-

sammenhingen; wir betrachtén also zwei Punkt :
: € 2y und- “
wenn: v und 2 als ,gleich,

)

— aZg+b
catd

gilt, mit ganzen rationalen g, b, G

d di i S
senigen. ie der Bedlngung' ad—>Dbe—=1

') Biche etwa W. Brascaxe, Differentinlgeometrie I, § 62,
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